生命科学青年学者论坛

发布者:马文君发布时间:2017-09-11浏览次数:1090

应生命学院黄志伟教授邀请,美国耶鲁大学医学院助教授常瑞来访太阳成官网,并做学术报告进行交流,欢迎相关师生参加!

报告题目:From lung to brain: airway mechnoreceptors that control breathing

报告时间:2017913日上午10:00-11:30

报告地点:44118太阳成城集团科学园2E411

报 告 人:常(耶鲁大学医学院助教授)

Assistant Professor, Department of Neuroscience, Department of Cellular & Molecular Physiology, Yale School of Medicine

  

报告人简介:

常瑞,2005年本科毕业于清华大学生物科学与技术系,2011年于美国南加州大学(University of Southern California)获得神经生物学博士,2011-2017年于美国哈佛大学医学院(Harvard Medical School)完成博士后训练。主要研究方向为神经生理学。博士后期间专注于对神经内感受系统的研究,揭示了感觉迷走神经对呼吸与消化系统的调控的分子细胞机制,其主要成果以第一作者发表在Cell(两篇)和Nature(一篇)杂志上。将于20181月加入耶鲁大学医学院神经生物学系 (Department of Neuroscience)和细胞分子生理学系(Department of Cellular & Molecular Physiology),作为助理教授(Assistant Professor)和实验室负责人(Principle Investigator)开展研究工作。


报告摘要:

Respiratory, cardiac, and other physiological functions are precisely controlled by the nervous system. The vagus nerve is a major conduit between lung and brain required for normal respiration, and some vagal sensory neurons detect airway expansion that occurs with every breath. Mechanical inflation of the lungs and airways triggers a protective respiratory reflex termed the Hering-Breuer inspiratory reflex, characterized by acute apnea. How vagal sensory neurons detect increases in airway volume was unknown at a molecular level. We initiated a molecular and genetic analysis of the sensory vagus nerve, identifying cell types that innervate the lung and powerfully control breathing. Moreover, we identified a critical role for the ion channel Piezo2 in airway mechanoreception. Optogenetic activation of vagal afferents containing Piezo2 causes apnea, trapping animals in a state of exhalation. Moreover, conditional deletion of Piezo2 from nodose ganglion-derived sensory neurons eliminates sensory neuron responses to airway stretch as well as the classical Hering-Breuer inspiratory reflex. These findings indicate a key role for Piezo2 as an airway stretch sensor critical for establishing efficient respiration at birth and maintaining respiratory homeostasis in adults. Understanding the sensory biology of respiratory control neurons in the vagus nerve may provide therapeutic targets for airway disease intervention.